Comparing the protective performances of 3 types of N95 filtering facepiece respirators during chest compressions

نویسندگان

  • Hyungoo Shin
  • Jaehoon Oh
  • Tae Ho Lim
  • Hyunggoo Kang
  • Yeongtak Song
  • Sanghyun Lee
چکیده

OBJECTIVE Healthcare providers in emergency departments should wear respirators for infection protection. However, the wearer's vigorous movements during cardiopulmonary resuscitation may affect the protective performance of the respirator. Herein, we aimed to assess the effects of chest compressions (CCs) on the protective performance of respirators. METHODS This crossover study evaluated 30 healthcare providers from 1 emergency department who performed CC with real-time feedback. The first, second, and third groups started with a cup-type, fold-type, and valve-type respirator, respectively, after which the respirators were randomized for each group. The fit factors were measured using a quantitative fit testing device before and during the CC in each experiment. The protection rate was defined as the proportion of respirators achieving a fit factor ≥100. RESULTS The fold-type respirator had a significantly greater protection rate at baseline (100.0% ± 0.0%) compared to the cup-type (73.6% ± 39.6%, P = .003) and valve-type respirators (87.5% ± 30.3%, P = .012). During the CC, the fit factor values significantly decreased for the cup-type (44.9% ± 42.8%, P < .001) and valve-type respirators (59.5% ± 41.7%, P = .002), but not for the fold-type respirator (93.2% ± 21.7%, P = .095). CONCLUSIONS The protective performances of respirators may be influenced by CC. Healthcare providers should identify the respirator that provides the best fit for their intended tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of surgical masks worn concurrently over N95 filtering facepiece respirators: extended service life versus increased user burden.

Growing concern over the availability of Respiratory protective devices (eg, filtering facepiece Respirators), in the face of the probable extreme demand brought on by a pandemic influenza, has prompted the suggestion that useful life of N95 filtering facepiece Respirator can be extended by the concurrent use of a surgical mask as an outer protective barrier over the Respirator. Personal protec...

متن کامل

Challenge of N95 filtering facepiece respirators with viable H1N1 influenza aerosols.

OBJECTIVE. Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODs. Five N95 F...

متن کامل

Evaluation of a quantitative fit testing method for N95 filtering facepiece respirators.

A method for performing quantitative fit tests (QNFT) with N95 filtering facepiece respirators was developed by earlier investigators. The method employs a simple clamping device to allow the penetration of submicron aerosols through N95 filter media to be measured. The measured value is subtracted from total penetration, with the assumption that the remaining penetration represents faceseal le...

متن کامل

Respiratory protection provided by N95 filtering facepiece respirators against airborne dust and microorganisms in agricultural farms.

A new system was used to determine the workplace protection factors (WPF) for dust and bioaerosols in agricultural environments. The field study was performed with a subject wearing an N95 filtering facepiece respirator while performing animal feeding, grain harvesting and unloading, and routine investigation of facilities. As expected, the geometric means (GM) of the WPFs increased with increa...

متن کامل

Evaluation of N95 Filtering Facepiece Respirators Challenged with Engineered Nanoparticles

NIOSH-certified respirators, including N95 respirators, are recommended when engineering and administrative controls do not adequately prevent exposures to airborne nanomaterials. Laboratory evaluations of filtering efficiency using standard test aerosols have been reported in the literature, but there is no information on penetration of engineered nanoparticles (1–100 nm) for N95 filtering fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2017